Chapters
Introduction
Introduction
0:00
Introduction
0:00
Learning Objectives
Learning Objectives
3:01
Learning Objectives
3:01
What is clustering?
What is clustering?
3:54
What is clustering?
3:54
Preparing data with PCA
Preparing data with PCA
5:24
Evaluating different types of clustering
Evaluating different types of clustering
7:16
K-means clustering
K-means clustering
7:42
K-means clustering
7:42
Within cluster sum of squares
Within cluster sum of squares
12:56
Demo: K-means clustering
Demo: K-means clustering
15:51
Demo: K-means clustering
15:51
Hierarchical clustering
Hierarchical clustering
28:08
Hierarchical clustering
28:08
Hierarchical clustering: agglomerative clustering
Hierarchical clustering: agglomerative clustering
30:28
Measures of dissimilarity between clusters
Measures of dissimilarity between clusters
33:23
Demo: K-means clustering vs hierarchical clustering
Demo: K-means clustering vs hierarchical clustering
35:43
Knowledge Check
Knowledge Check
1:03:40
Knowledge Check
1:03:40
Summary and Conclusion
Summary and Conclusion
1:12:53
Summary and Conclusion
1:12:53
Sync to video time
Description
- Microsoft Learn Module: https://aka.ms/learnlive-20220923A
- When to use clustering models
- How to train and evaluate clustering models by using the tidymodels framework
- Twitter:
/ carlottacaste
- LinkedIn:
/ carlotta-castelluccio
- Twitter:
/ jasleen101010
- LinkedIn:
/ jasleen-sondhi
- LinkedIn:
/ olanrewaju-oyinbooke
- Twitter:
/ theoyinbooke
Transcript
Follow along using the transcript.
Show transcript
Microsoft Developer
589K subscribers
Transcript
NaN / NaN
Show more