Stream Analytics

Official Documentation

Service Description

The analysis and evaluation of data stored in fixed memory ("resting") can be performed via HDInsight, for example. However, IoT scenarios often require the evaluation of data streams, i.e., data "in motion." Stream Analytics covers precisely this requirement, enabling analysis of data streams in real-time, i.e., data streams can be monitored, and abnormalities in the data can be detected and reported during operation. Queries on the data streams can be formulated in an SQL-based language. Database specialists therefore have a familiar technology for analyzing data streams.

Getting Started

  1. 7/23/2015, Video, 0:16:48
    Scott loves IoT devices, and today Santosh Balasubramanian hooks up a Raspberry PI to Azure Stream Analytics. Use a SQL-like language to ask questions of your IoT devices and...
  2. 10/6/2015, Video, 0:47:03
    Azure Stream Analytics, is an Azure Service that enables real-time insights over streaming data from devices, sensors, infrastructure, and applications. We recently announced...
  3. 12/5/2016, Video, 0:08:51
    Azure Stream Analytics – adding real-time capabilities to your applications
  4. 1/16/2017, Mva
    If you’d like to learn how to architect solutions in Cortana Intelligence Suite and how to build intelligence into your applications, don’t miss this workshop! Build an...
  5. 9/30/2016, Mva
    Want to set up real-time analytic computations on data streaming from devices, sensors, websites, social media, apps, and more? Check out this demo-filled, hands-on Azure...
  6. 11/21/2016, Mva
    Want to learn about cutting-edge data science technologies—Azure Machine Learning and Azure Stream Analytics? Join experts Christopher Harrison and Jeff Prosise for this...
  7. 5/5/2017, Mva
    Ready to learn more about Internet of Things (IoT)? Join expert Jeremy Foster for this Azure IoT overview, and find out how to get started. Explore the fundamentals of IoT and...
  8. 6/19/2017, Mva
    Ready to take your first steps in IoT device development? Bring your basic programming skills, and get started with this practical exploration of what IoT means and how to use...
  9. 5/28/2015, Video, 0:58:45
    Azure Stream Analytics removes the complexity of stream processing for developers by providing a SQL-like language for authoring queries.Learn how to build queries to perform...

Latest Content

Subscribe to News about Stream Analytics


Web Content

Stream Analytics Documentation

1. Overview
     1.1. What is Stream Analytics?
2. Quickstarts
     2.1. Create a job - Azure portal
     2.2. Create a job - PowerShell
     2.3. Create a job - Visual Studio
3. Tutorials
     3.1. 1 - Create / manage a job
     3.2. 2 - Run Azure Functions
     3.3. 3 - Run a Javascript UDF
     3.4. 4 - Deploy with CI/CD in Azure Pipelines
     3.5. 5 - Run C# UDF on Edge
4. Samples
     4.1. Code samples
5. Concepts
     5.1. Input types for a job
          5.1.1. Streaming data inputs
          5.1.2. Reference data inputs
     5.2. Output types for a job
          5.2.1. Output to Cosmos DB
          5.2.2. Output to Azure SQL DB
          5.2.3. Blob custom path patterns
     5.3. Window functions
     5.4. Geospatial functions
     5.5. Compatibility level
     5.6. Common query patterns
     5.7. Parse JSON and AVRO data
     5.8. Event ordering considerations
     5.9. Checkpoint and replay
     5.10. Error policy
6. How-to-guides
     6.1. Manage
          6.1.1. Update credentials
          6.1.2. Configure alerts
          6.1.3. Test a job
          6.1.4. View results on a dashboard
          6.1.5. Clean up a job
          6.1.6. Pair jobs for reliability
          6.1.7. Authenticate with managed identity
     6.2. Build solutions
          6.2.1. Twitter sentiment analysis
          6.2.2. Real time fraud detection
          6.2.3. Run jobs on IoT edge
          6.2.4. Toll booth sensor data analysis
          6.2.5. Run a JavaScript UDA
          6.2.6. High-frequency trading
          6.2.7. Process IoT streaming data
          6.2.8. Threshold based rules
          6.2.9. Process Kafka events
     6.3. Monitor
          6.3.1. Monitor jobs- Azure portal
          6.3.2. Monitor jobs- PowerShell
          6.3.3. Monitor jobs- Azure .Net SDK
          6.3.4. Monitor jobs- Visual Studio
     6.4. Scale
          6.4.1. Scale with streaming units
          6.4.2. Scale with query parallelization
      Increase throughput
          6.4.3. Scale with ML functions
     6.5. Automate
          6.5.1. Using .NET SDK
          6.5.2. Using Azure PowerShell
     6.6. Visual Studio tools
          6.6.1. Install tools
          6.6.2. Test with sample data
          6.6.3. Test with live data
          6.6.4. View jobs in Visual Studio
          6.6.5. Develop an Edge job
          6.6.6. Set up CI/CD pipeline
          6.6.7. Write .NET UDF for Edge
     6.7. Troubleshoot
          6.7.1. Input
          6.7.2. Ouput
          6.7.3. Query logic
          6.7.4. Diagnostic logs
     6.8. Integrate with machine learning
          6.8.1. Sentiment analysis with ML models
          6.8.2. Anomaly detection
          6.8.3. Use REST APIs
     6.9. Debug using job diagram
7. Reference
     7.1. Azure PowerShell
     7.2. Query language
     7.3. .NET
     7.4. REST
8. Resources
     8.1. Stream Analytics previews
     8.2. Azure Roadmap
     8.3. Blog
     8.4. Feedback forum
     8.5. Forum
     8.6. Pricing
     8.7. Pricing calculator
     8.8. Service updates
     8.9. Stack Overflow
     8.10. Videos
     8.11. Customer case studies
     8.12. Whitepaper - Real-time event processing

Online Training Content

Date Title
6/19/2017 edX-Dev225x - Developing IoT Solutions with Azure IoT
5/24/2017 Processing Real-Time Data Streams in Azure
5/5/2017 Introduction to Azure IoT
1/16/2017 Cortana Intelligence Suite End-to-End
11/21/2016 Azure Data Analytics for Developers
9/30/2016 Hands-On with Azure Stream Analytics
6/3/2015 Einführung in Microsoft Azure–Advanced Services


Tool Description


Date Title Length
Enable real-time hot path analytics and machine learning models in the cloud and on - BRK3199
Azure Stream Analytics: Managing timelines and coding on IoT Edge | Azure Friday
Azure Stream Analytics: Managing timelines and coding on IoT Edge
Machine learning at scale : Build 2018
Transforming Manufacturing, Energy & Utilities industries with Azure Stream Analytics  : Build 2018
Azure IoT Edge: a breakthrough platform and service running cloud intelligence on any device.
Azure IoT Edge: a breakthrough platform and service running cloud intelligence on any device.
Machine learning at scale
Transforming Manufacturing, Energy & Utilities industries with Azure Stream Analytics
Stream Analytics in IoT solutions

Page 1 of 5