SQL Data Warehouse

Official Documentation

Service Description

With SQL Data Warehouse, Data Warehouse solutions can be set up flexibly and their resources can be adapted to the specific data evaluation requirements. Compute and storage services can be scaled independently of one another, allowing the compute resources to be extended, reduced, or suspended while retaining the storage systems (for relational data or non-relational Blob storage).

Getting Started

  1. 9/28/2016, Video, 1:03:40
    Learn how SQL Data Warehouse can help you succeed with a complex hybrid architecture or deployment in Microsoft Azure. Deep views on integration with Azure services such as...
  2. 9/26/2017, Video, 1:14:36
    Did you know that *almost everything* tastes better with pesto? That’s especially true when you are dining on data with a high-carb, Petabyte scale, cloud data warehouse...
  3. 9/28/2017, Video, 1:12:13
    Microsoft Azure provides a broad range of services for working with data. Using these services well requires knowing at least a little bit about all of them. In this session,...



Latest Content

Subscribe to News about SQL Data Warehouse

Title  
Video
Blog
Blog
Video
Video
Video
Video
Video
Video
Video
Video
Video
more...


Web Content

SQL Data Warehouse Documentation

1. Overview
     1.1. About SQL Data Warehouse
     1.2. SQL Data Warehouse architecture
     1.3. Data warehouse units
     1.4. Cheat sheet
     1.5. Best practices
     1.6. Capacity limits
     1.7. FAQ
2. Release Notes
     2.1. September 2018
     2.2. August 2018
     2.3. July 2018
     2.4. June 2018
     2.5. May 2018
     2.6. April 2018
3. Quickstarts
     3.1. Create and connect
          3.1.1. Portal
          3.1.2. PowerShell
     3.2. Pause and resume
          3.2.1. Portal
          3.2.2. PowerShell
     3.3. Scale
          3.3.1. Portal
          3.3.2. PowerShell
          3.3.3. T-SQL
4. Concepts
     4.1. Security
          4.1.1. Overview
          4.1.2. Access control
          4.1.3. Firewall rules
          4.1.4. Firewall virtual network rules
          4.1.5. Authentication
          4.1.6. Azure AD
          4.1.7. Logins and users
          4.1.8. Multi-factor auth
          4.1.9. Auditing
          4.1.10. Column-level security
     4.2. Data loading
          4.2.1. Overview
          4.2.2. Best practices
          4.2.3. Columnstore compression
     4.3. Development
          4.3.1. Overview
          4.3.2. Best practices
          4.3.3. Tables
               4.3.3.1. Overview
               4.3.3.2. CTAS
               4.3.3.3. Data types
               4.3.3.4. Distributed tables
               4.3.3.5. Indexes
               4.3.3.6. Identity
               4.3.3.7. Partitions
               4.3.3.8. Replicated tables
               4.3.3.9. Statistics
               4.3.3.10. Temporary
          4.3.4. T-SQL language elements
               4.3.4.1. Loops
               4.3.4.2. Stored procedures
               4.3.4.3. Transactions
               4.3.4.4. Transactions Best Practices
               4.3.4.5. User-defined schemas
               4.3.4.6. Variable assignment
               4.3.4.7. Views
     4.4. Querying
          4.4.1. Dynamic SQL
          4.4.2. Group by options
          4.4.3. Labels
     4.5. Workload management
          4.5.1. Resource classes & workload management
          4.5.2. Memory & concurrency limits
     4.6. Manageability & monitoring
          4.6.1. Overview
          4.6.2. Scale, pause, resume
          4.6.3. Resource utilization & query activity
          4.6.4. Data protection
          4.6.5. Recommendations
          4.6.6. Maintenance schedule
          4.6.7. Troubleshoot
     4.7. Maintenance schedules
          4.7.1. Overview
          4.7.2. View maintenance schedule
          4.7.3. Change maintenance schedule
     4.8. Integration
          4.8.1. Overview
          4.8.2. SQL Database elastic query
5. How-to guides
     5.1. Secure
          5.1.1. Configure Azure AD auth
          5.1.2. Conditional access
          5.1.3. Virtual network rules by PowerShell
          5.1.4. Enable encryption - portal
          5.1.5. Enable encryption - T-SQL
          5.1.6. Threat detection
     5.2. Load Data
          5.2.1. New York taxi cab data
          5.2.2. Contoso public data
          5.2.3. Azure Data Lake Storage Gen1
          5.2.4. Azure Databricks
          5.2.5. Data Factory
          5.2.6. SSIS
          5.2.7. Load WideWorldImporters
     5.3. Develop
          5.3.1. Overview
          5.3.2. Connection strings
          5.3.3. sqlcmd
          5.3.4. Query with SSMS
          5.3.5. Query with Visual Studio
          5.3.6. Install Visual studio
     5.4. Manage workload
          5.4.1. Analyze your workload
     5.5. Monitor and tune
          5.5.1. Monitor your workload
          5.5.2. Upgrade to Gen2
          5.5.3. Monitor Gen2 cache
          5.5.4. Restore your data warehouse
          5.5.5. Automate performance levels
     5.6. Integrate
          5.6.1. Use machine learning
          5.6.2. Build data pipelines
               5.6.2.1. Connect with Fivetran
               5.6.2.2. Get started with Striim
               5.6.2.3. Add an Azure Stream Analytics job
          5.6.3. Build dashboards and reports
               5.6.3.1. Configure SQL Database elastic query
               5.6.3.2. Visualize with Power BI
6. Reference
     6.1. T-SQL
          6.1.1. Full reference
          6.1.2. SQL DW language elements
          6.1.3. SQL DW statements
     6.2. System views
     6.3. PowerShell cmdlets
     6.4. REST APIs
7. Resources
     7.1. Azure Roadmap
     7.2. Forum
     7.3. Pricing
     7.4. Pricing calculator
     7.5. Feature requests
     7.6. Service updates
     7.7. Stack Overflow
     7.8. Support
     7.9. Videos
     7.10. Partners
          7.10.1. Business intelligence
          7.10.2. Data integration
          7.10.3. Data management

Web Pages

Content Type
Build 2016 Workshops: Azure Data Services Lab

Online Training Content

Date Title
5/24/2017 Delivering a Data Warehouse in the Cloud
12/11/2015 Deliver an Elastic Data Warehouse as a Service

Tools

Tool Description
Scale Azure SQL Data Warehouse Scale Azure SQL Data WarehouseThis is a simple runbook that will allow you to scale your Azure SQL Data Warehouse.Depending on your goals with Azure SQL Data Warehouse, at time it is important to scale up and down depending the incoming workload or amount of data. In Automation,
Resume Azure SQL Data Warehouse Resume Azure SQL Data WarehouseThis is a simple runbook that will allow you to resume a Azure SQL Data Warehouse.Resuming as part of a ETL/ELT Data WorkflowWe commonly get asked if there is some way that an Azure SQL Data Warehouse can be resumed on a schedule. Using this, you ca

Videos

Date Title Length
10/19/2018
Rubikloud's journey to build the modern data warehouse with Azure SQL Data Warehouse - BRK2303
0:43:04
10/2/2018
Modern Data Warehousing on Azure – Learnings from large implementations - BRK3307
1:15:06
10/2/2018
Azure SQL Data Warehouse tips and tricks - THR2181
0:17:11
10/2/2018
Rubikloud's journey to build the modern data warehouse with Azure SQL Data Warehouse - BRK2303
0:43:07
10/2/2018
Thousands of Azure data warehousing success stories - BRK2408
0:39:39
10/2/2018
The future of querying big data with Polybase and SQL Server - THR2170
0:24:17
10/2/2018
Data DevOps is possible: Understanding what’s possible to DevOps your data - THR3136
0:21:46
10/2/2018
Automating Azure SQL Data Warehouse - THR2192
0:17:19
10/2/2018
How to shoot yourself in the foot with Azure SQL Data Warehouse - THR2200
0:17:53
10/2/2018
Microsoft Power BI: Unify all your data and deliver powerful insights with - BRK2061
0:45:22

Page 1 of 9