SQL Data Warehouse

Official Documentation

Service Description

With SQL Data Warehouse, Data Warehouse solutions can be set up flexibly and their resources can be adapted to the specific data evaluation requirements. Compute and storage services can be scaled independently of one another, allowing the compute resources to be extended, reduced, or suspended while retaining the storage systems (for relational data or non-relational Blob storage).

Getting Started

  1. Azure207x - Databases in Azure
    5/31/2017, Mva



Latest Content

Subscribe to News about SQL Data Warehouse

Title  
Blog
Blog
Blog
Video
Video
Video
Video
Video
Video
Video
Video
Video
more...


Azure Documentation

1. Overview
     1.1. What is SQL Data Warehouse?
     1.2. Data warehouse workload
     1.3. Distributed data
     1.4. Frequently asked questions
2. Get Started
     2.1. Beginner tutorial
     2.2. Elastic Query tutorial
     2.3. Best practices
     2.4. Manage
3. How To
     3.1. Backup and restore
          3.1.1. Backup Overview
          3.1.2. Restore Overview
               3.1.2.1. Azure portal
               3.1.2.2. Azure PowerShell
               3.1.2.3. REST
     3.2. Connect
          3.2.1. Overview
          3.2.2. SSMS
          3.2.3. Visual Studio
          3.2.4. Install Visual Studio
          3.2.5. sqlcmd
          3.2.6. Connection strings
     3.3. Create
          3.3.1. Azure portal
          3.3.2. Azure PowerShell
          3.3.3. T-SQL
     3.4. Develop
          3.4.1. Overview
          3.4.2. Tables
               3.4.2.1. Overview
               3.4.2.2. CTAS
               3.4.2.3. Data types
               3.4.2.4. Distributed tables
               3.4.2.5. Indexes
               3.4.2.6. Identity
               3.4.2.7. Partitions
               3.4.2.8. Replicated tables
               3.4.2.9. Statistics
               3.4.2.10. Temporary
          3.4.3. Queries
               3.4.3.1. Dynamic SQL
               3.4.3.2. Group by options
               3.4.3.3. Labels
          3.4.4. T-SQL language elements
               3.4.4.1. Loops
               3.4.4.2. Stored procedures
               3.4.4.3. Transactions
               3.4.4.4. Transactions Best Practices
               3.4.4.5. User-defined schemas
               3.4.4.6. Variable assignment
               3.4.4.7. Views
     3.5. Integrate
          3.5.1. Overview
          3.5.2. Data Factory
          3.5.3. Machine Learning
          3.5.4. Machine Learning tutorial
          3.5.5. Power BI
          3.5.6. Power BI visualization
          3.5.7. Stream Analytics
          3.5.8. Elastic Query with SQL Database and SQL Data Warehouse
     3.6. Load
          3.6.1. Concepts
               3.6.1.1. Overview
               3.6.1.2. PolyBase guidance
          3.6.2. Tutorials
               3.6.2.1. PolyBase
          3.6.3. How-to guides
               3.6.3.1. Sample data
               3.6.3.2. Azure Data Lake Store
               3.6.3.3. BCP
               3.6.3.4. Data Factory
               3.6.3.5. PolyBase from blob storage
               3.6.3.6. PolyBase from SQL Server
               3.6.3.7. RedGate
               3.6.3.8. SSIS
     3.7. Migrate
          3.7.1. Overview
          3.7.2. Migration Utility
          3.7.3. Migrate schema
          3.7.4. Migrate code
          3.7.5. Migrate data
          3.7.6. Migrate to premium storage
     3.8. Manage compute
          3.8.1. Overview
          3.8.2. Azure portal
          3.8.3. PowerShell
          3.8.4. REST API
          3.8.5. T-SQL
     3.9. Performance
          3.9.1. Overview
          3.9.2. Columnstore compression
          3.9.3. Monitor
          3.9.4. Workload
     3.10. Security
          3.10.1. Overview
          3.10.2. Auditing
          3.10.3. Auditing for down-level clients
          3.10.4. Authentication
          3.10.5. Encryption
          3.10.6. Encryption with T-SQL
          3.10.7. Threat detection
     3.11. Troubleshoot
          3.11.1. Troubleshoot
4. Reference
     4.1. Capacity limits
     4.2. T-SQL
          4.2.1. Full reference
          4.2.2. SQL DW language elements
          4.2.3. SQL DW statements
     4.3. System views
     4.4. PowerShell cmdlets
5. Resources
     5.1. Azure Roadmap
     5.2. Forum
     5.3. Pricing
     5.4. Pricing calculator
     5.5. Feature requests
     5.6. Service updates
     5.7. Stack Overflow
     5.8. Support
     5.9. Videos
     5.10. Partners
          5.10.1. Business intelligence
          5.10.2. Data integration
          5.10.3. Data management

Web Content

Content Type
Build 2016 Workshops: Azure Data Services Lab

Online Training Content

Date Title
5/31/2017 Azure207x - Databases in Azure
5/24/2017 Delivering a Data Warehouse in the Cloud
12/11/2015 Deliver an Elastic Data Warehouse as a Service

Tools

Tool Description
Scale Azure SQL Data Warehouse Scale Azure SQL Data WarehouseThis is a simple runbook that will allow you to scale your Azure SQL Data Warehouse.Depending on your goals with Azure SQL Data Warehouse, at time it is important to scale up and down depending the incoming workload or amount of data. In Automation,
Resume Azure SQL Data Warehouse Resume Azure SQL Data WarehouseThis is a simple runbook that will allow you to resume a Azure SQL Data Warehouse.Resuming as part of a ETL/ELT Data WorkflowWe commonly get asked if there is some way that an Azure SQL Data Warehouse can be resumed on a schedule. Using this, you ca

Videos

Date Title Length
9/30/2017 How to provide business insight from your data using Azure Analysis Services 0:19:50
9/30/2017 Dining on data: Consume and query petabytes of data with Azure SQL Data Warehouse 1:14:36
9/30/2017 Building a better data solution: Microsoft SQL Server and Azure Data Services 0:40:38
9/30/2017 Getting peak performance from your SQL Data Warehouse column store 1:15:23
9/30/2017 Secure your data in Azure SQL Database and SQL Data Warehouse 0:55:37
9/29/2017 Architect your big data solutions with SQL Data Warehouse and Azure Analysis Services 1:08:16
9/29/2017 SQL Server Data Warehouse reference architectures 0:46:57
9/28/2017 Azure SQL Data Warehouse lessons learned and practical implementation tips 1:19:32
9/28/2017 Data on Azure: The big picture 1:12:13
9/28/2017 Delivering enterprise BI with Azure Analysis Services 1:15:30

Page 1 of 5