Architecture

Official Documentation

Getting Started

  1. 8/28/2017, Mva
    This technology-agnostic course begins by explaining the benefits of distributed cloud applications with an emphasis on maintaining high-availability and scalability in a...
  2. 12/8/2017, Ebook
    This guide presents a structured approach for designing cloud applications that are scalable, resilient, and highly available. The guidance in this ebook is intended to help...
  3. 2/10/2017, Video, 0:56:41
    One of the benefits of cloud technology that is only just being realised is the greatly reduced risk profile and timelines it enables when designing and delivering robust,...
  4. 9/23/2015, Ebook
    This guide contains twenty-four design patterns and ten related guidance topics that articulate the benefits of applying patterns by showing how each piece can fit into the...
  5. 12/8/2017, Ebook
    We created The Developer’s Guide to Microsoft Azure to help you on your journey to the cloud, whether you’re just considering making the move, or you’ve already decided and...
  6. 5/20/2016, Ebook
    This guide breaks down the “why” and “how” for scenarios suited to the cloud with a focus on building apps using platform services available in Microsoft Azure. The second...



Latest Content

Subscribe to News about Architecture

Title  
Video
Podcast
Blog
Blog
Blog
Blog
Video
Video
Video
Video
Video
Blog
more...


Web Content

Architecture Documentation

1. Cloud Fundamentals
     1.1. Application architecture guide
          1.1.1. Introduction
          1.1.2. Architecture styles
               1.1.2.1. Overview
               1.1.2.2. N-tier application
               1.1.2.3. Web-queue-worker
               1.1.2.4. Microservices
               1.1.2.5. CQRS
               1.1.2.6. Event-driven architecture
               1.1.2.7. Big data
               1.1.2.8. Big compute
          1.1.3. Choosing a compute service
               1.1.3.1. Overview
               1.1.3.2. Decision tree
               1.1.3.3. Compute comparison
          1.1.4. Choosing a data store
               1.1.4.1. Overview
               1.1.4.2. Data store comparison
          1.1.5. Design principles
               1.1.5.1. Overview
               1.1.5.2. Design for self-healing
               1.1.5.3. Make all things redundant
               1.1.5.4. Minimize coordination
               1.1.5.5. Design to scale out
               1.1.5.6. Partition around limits
               1.1.5.7. Design for operations
               1.1.5.8. Use managed services
               1.1.5.9. Use the best data store for the job
               1.1.5.10. Design for evolution
               1.1.5.11. Build for the needs of business
          1.1.6. Pillars of software quality
     1.2. Data architecture guide
          1.2.1. Introduction
          1.2.2. Traditional RDBMS workloads
               1.2.2.1. Overview
               1.2.2.2. Online transaction processing (OLTP)
               1.2.2.3. Data warehousing
               1.2.2.4. Online analytical processing (OLAP)
               1.2.2.5. Extract, transform, and load (ETL)
          1.2.3. Big data architectures
               1.2.3.1. Overview
               1.2.3.2. Batch processing
               1.2.3.3. Real time processing
               1.2.3.4. Machine learning at scale
               1.2.3.5. Non-relational data stores
               1.2.3.6. Scenarios
                    1.2.3.6.1. Advanced analytics
                    1.2.3.6.2. Data lakes
                    1.2.3.6.3. Free-form text search
                    1.2.3.6.4. Interactive data exploration
                    1.2.3.6.5. Natural language processing
                    1.2.3.6.6. Time series solutions
                    1.2.3.6.7. Working with CSV and JSON files
               1.2.3.7. Technology choices
                    1.2.3.7.1. Analytical data stores
                    1.2.3.7.2. Analytics and reporting
                    1.2.3.7.3. Batch processing
                    1.2.3.7.4. Cognitive services
                    1.2.3.7.5. Data storage
                    1.2.3.7.6. Machine learning
                    1.2.3.7.7. Natural language processing
                    1.2.3.7.8. Pipeline orchestration
                    1.2.3.7.9. Real-time message ingestion
                    1.2.3.7.10. Search data stores
                    1.2.3.7.11. Stream processing
          1.2.4. Cross-cutting concerns
               1.2.4.1. Data transfer
               1.2.4.2. Extending on-premises data solutions to the cloud
               1.2.4.3. Securing data solutions
     1.3. Cloud design patterns
          1.3.1. Overview
          1.3.2. Categories
               1.3.2.1. Availability
               1.3.2.2. Data management
               1.3.2.3. Design and implementation
               1.3.2.4. Messaging
               1.3.2.5. Management and monitoring
               1.3.2.6. Performance and scalability
               1.3.2.7. Resiliency
               1.3.2.8. Security
          1.3.3. Ambassador
          1.3.4. Anti-corruption Layer
          1.3.5. Backends for Frontends
          1.3.6. Bulkhead
          1.3.7. Cache-Aside
          1.3.8. Circuit Breaker
          1.3.9. Command and Query Responsibility Segregation (CQRS)
          1.3.10. Compensating Transaction
          1.3.11. Competing Consumers
          1.3.12. Compute Resource Consolidation
          1.3.13. Event Sourcing
          1.3.14. External Configuration Store
          1.3.15. Federated Identity
          1.3.16. Gatekeeper
          1.3.17. Gateway Aggregation
          1.3.18. Gateway Offloading
          1.3.19. Gateway Routing
          1.3.20. Health Endpoint Monitoring
          1.3.21. Index Table
          1.3.22. Leader Election
          1.3.23. Materialized View
          1.3.24. Pipes and Filters
          1.3.25. Priority Queue
          1.3.26. Queue-Based Load Leveling
          1.3.27. Retry
          1.3.28. Scheduler Agent Supervisor
          1.3.29. Sharding
          1.3.30. Sidecar
          1.3.31. Static Content Hosting
          1.3.32. Strangler
          1.3.33. Throttling
          1.3.34. Valet Key
     1.4. Best practices for cloud applications
          1.4.1. API design
          1.4.2. API implementation
          1.4.3. Autoscaling
          1.4.4. Background jobs
          1.4.5. Caching
          1.4.6. Content Delivery Network
          1.4.7. Data partitioning
          1.4.8. Monitoring and diagnostics
          1.4.9. Naming conventions
          1.4.10. Transient fault handling
          1.4.11. Retry guidance for specific services
     1.5. Performance antipatterns
          1.5.1. Overview
          1.5.2. Busy Database
          1.5.3. Busy Front End
          1.5.4. Chatty I/O
          1.5.5. Extraneous Fetching
          1.5.6. Improper Instantiation
          1.5.7. Monolithic Persistence
          1.5.8. No Caching
          1.5.9. Synchronous I/O
     1.6. Azure for AWS Professionals
          1.6.1. Overview
          1.6.2. Services comparison
2. Example Scenarios
     2.1. Overview
     2.2. AI
          2.2.1. Hotel reservation chatbot
          2.2.2. Image classification
     2.3. Apps
          2.3.1. Computer-aided engineering
          2.3.2. Decentralized trust between banks
          2.3.3. Web application monitoring
          2.3.4. DevOps with containers
          2.3.5. DevOps with Azure DevOps
          2.3.6. SAP for dev/test
          2.3.7. SAP for production
          2.3.8. E-commerce front-end
          2.3.9. E-commerce API management
          2.3.10. E-commerce product search
     2.4. Data and Analytics
          2.4.1. IoT for construction
          2.4.2. Data warehousing and analytics
          2.4.3. Automotive IOT data
          2.4.4. Real-time fraud detection
          2.4.5. Scalable order processing
     2.5. Infrastructure
          2.5.1. Computational fluid dynamics (CFD)
          2.5.2. Linux virtual desktops
          2.5.3. Decomposing monolithic applications
          2.5.4. Highly scalable WordPress
          2.5.5. Multi-tier Windows
          2.5.6. HPC video rendering
3. Reference Architectures
     3.1. Overview
     3.2. AI
          3.2.1. Batch scoring for deep learning models
     3.3. Big data
          3.3.1. Enterprise BI with SQL Data Warehouse
          3.3.2. Automated enterprise BI with SQL Data Warehouse and Data Factory
          3.3.3. Stream processing with Azure Stream Analytics
     3.4. Hybrid networks
          3.4.1. Overview
          3.4.2. VPN
          3.4.3. ExpressRoute
          3.4.4. ExpressRoute with VPN failover
          3.4.5. Hub-spoke topology
          3.4.6. Hub-spoke topology with shared services
     3.5. Identity management
          3.5.1. Overview
          3.5.2. Integrate on-premises AD with Azure AD
          3.5.3. Extend AD DS to Azure
          3.5.4. Create an AD DS forest in Azure
          3.5.5. Extend AD FS to Azure
     3.6. N-tier applications
          3.6.1. N-tier application with SQL Server
          3.6.2. Multi-region N-tier application
          3.6.3. N-tier application with Cassandra
          3.6.4. Deploy a Linux VM
          3.6.5. Deploy a Windows VM
     3.7. Network DMZ
          3.7.1. DMZ between Azure and on-premises
          3.7.2. DMZ between Azure and the Internet
          3.7.3. Highly available network virtual appliances
     3.8. SAP
          3.8.1. SAP NetWeaver for AnyDB
          3.8.2. SAP S/4HANA
          3.8.3. SAP HANA on Azure Large Instances
     3.9. Serverless
          3.9.1. Serverless web application
          3.9.2. Serverless event processing
     3.10. VM workloads
          3.10.1. Jenkins server
          3.10.2. SharePoint Server 2016
     3.11. Web applications
          3.11.1. Basic web application
          3.11.2. Improved scalability
          3.11.3. Multi-region deployment
4. Design Guides
     4.1. Build microservices on Azure
          4.1.1. Introduction
          4.1.2. Domain analysis
          4.1.3. Identifying microservice boundaries
          4.1.4. Data considerations
          4.1.5. Interservice communication
          4.1.6. API design
          4.1.7. Ingestion and workflow
          4.1.8. API gateways
          4.1.9. Logging and monitoring
          4.1.10. CI/CD
     4.2. Manage multitenant identity
          4.2.1. Introduction
          4.2.2. The Tailspin scenario
          4.2.3. Authentication
          4.2.4. Claims-based identity
          4.2.5. Tenant sign-up
          4.2.6. Application roles
          4.2.7. Authorization
          4.2.8. Secure a web API
          4.2.9. Cache access tokens
          4.2.10. Client assertion
          4.2.11. Protect application secrets
          4.2.12. Federate with a customer's AD FS
          4.2.13. Run the Surveys application
     4.3. Migrate from Cloud Services to Service Fabric
          4.3.1. Migrate a Cloud Services application to Service Fabric
          4.3.2. Refactor a Service Fabric application
5. Design Review Framework
     5.1. Design for resiliency
     5.2. Failure mode analysis
     5.3. Availability checklist
     5.4. DevOps checklist
     5.5. Resiliency checklist (general)
     5.6. Resiliency checklist (Azure services)
     5.7. Scalability checklist
6. Enterprise Cloud Adoption
     6.1. Introduction
     6.2. Getting Started
          6.2.1. Overview
          6.2.2. How does Azure work?
          6.2.3. What is cloud resource governance?
          6.2.4. Resource access governance in Azure
     6.3. Governance
          6.3.1. Overview
          6.3.2. Governance design for a single team
          6.3.3. Governance design for multiple teams
     6.4. Infrastructure
          6.4.1. Deploy a basic workload
     6.5. Operations
          6.5.1. Overview
          6.5.2. Establish an operational fitness review
     6.6. Appendix
          6.6.1. Azure enterprise scaffold
          6.6.2. Implementing Azure enterprise scaffold

Online Training Content

Date Title
8/28/2017 Architecting Distributed Cloud Applications
1/13/2015 Architecting Microsoft Azure Solutions

Tools

Tool Description

Videos

Date Title Length
10/22/2018
BP Azure Platform Adoption - A Megalopolis Architecture - BRK2445
0:49:29
10/2/2018
BP Azure Platform Adoption - A Megalopolis Architecture - BRK2445
0:49:26
10/2/2018
Build your IoT solution with the Azure IoT reference architecture - THR2196
0:27:12
10/2/2018
Making Microsoft Teams work without understanding Information Architecture - BRK2287
0:45:01
10/2/2018
Proven Azure Infrastructure Architecture principles for migrating to cloud. - BRK2216
1:16:49
10/2/2018
Azure Sphere Architecture Discussion
0:07:50
7/27/2018
TWC9: Imagine Cup Winners, Visual Studio IntelliCode for Python, Knative in Azure, and more
0:06:52
5/9/2018
Inside Azure Datacenter Architecture with Mark Russinovich : Build 2018
1:18:36
5/6/2018
How Microsoft AI defeated Ms Pacman
1:33:22
5/6/2018
Inside Azure Datacenter Architecture with Mark Russinovich
1:33:22

Page 1 of 6