
APIs
+MICROSERVICES

The ultimate guide to creating an
enterprise API platform

2 Azure APIs + Microservices Guide

TABLE
OF CONTENTS

3	 Intro

4 	 Understanding web APIs

11 	 Benefits of moving to an API-centric enterprise

14 	 The shift to API platform thinking

24 	 The emergence of microservices

30 	 Components of an API platform

36 	 Planning your move to an API-centric organization

47 	 Conclusion

3 Azure APIs + Microservices Guide

INTRO

APIs exist at the intersection of business, products, and technologies. They power customer
experience, business relationships, and internal innovation.

Unlike the many choices that a technical leader must make regarding programming
languages, libraries, and infrastructure, APIs have a direct impact on the speed of software
delivery within a business. Therefore, leaders must not leave an organization’s API strategy up
to their developers as they build new APIs. Instead, it requires a thoughtful and well-planned
approach across the entire organization.

This e-book is designed for technical leaders tasked with establishing a new API program
for their organization or maturing an existing program. It will provide insights and decision
factors based on established practices in organizations with successful API programs.

4 Azure APIs + Microservices Guide

CHAPTER
ONE What are web APIs?

As a review, an application programming interface (API) specifies how software components and systems
should interact with each other. Web APIs extend this interaction beyond a single application by using
HTTP, the language of the web, as the network protocol.

A web API doesn’t have to be RESTful. It doesn’t have to use SOAP. It doesn’t have to use JSON or XML
or OAuth or be built in a specific programming language or framework. It doesn’t have to have pretty
URLs. Web APIs may exhibit some, all, or none of these traits. The only requirement for a web API is that
it allows one program or software component to interact with another in a repeatable way over HTTP.

UNDERSTANDING WEB APIs

Web app in browser API

Request

Response

Internet

Diagram of a simple web-based application that retrieves data from a database via an API.

Web server Database

5 Azure APIs + Microservices Guide

THE GROWTH OF
WEB AND MOBILE APIs
There are three primary reasons why web APIs have gained traction over the last decade:

Simplicity

Web APIs speak a simple language: HTTP,
the language of the web. This promotes
easy integration from any programming
language—no special libraries required.

Higher demand

From single-page applications (SPAs) to native
and web-based mobile apps, the need for
mobile accessibility and anytime, anywhere
access has shifted the focus from HTML-
based delivery to the separation of data and
capabilities from the presentation layer.

Lower cost

Open source technologies have reduced the
cost of building web APIs compared with the
previous generation of technologies, which
required expensive middleware and training
to deliver them successfully.

6 Azure APIs+ Microservices Guide

THE MOST IMPORTANT PRODUCTS
in your organization are the business and technical capabilities your applications deliver. These capabilities,
when combined into solutions, enable your customers, your partners, and your workforce to solve everyday
problems and achieve their desired outcomes.

With the emergence of messaging platforms, bots, and voice interfaces, things are dramatically changing.
We are starting to see the focus shift from building applications to delivering capabilities via APIs that are
then integrated into these platforms. Rather than users going to an application to get things done, we are
now experiencing the shift to applications going to the user through these third-party platforms.

Applications are now going to the user through messaging
platforms such as Slack, Cisco Teams, and Microsoft Teams.

NO YES

APIs as capabilities

7 Azure APIs+ Microservices Guide

Web APIs deliver capabilities
in a variety of roles

PRIVATE APIs
Hidden behind the firewall of many companies are private APIs that power day-to-day operations.
These private APIs may range from APIs that power mobile apps to internal ones used by the
workforce. Examples include: managing inventory, booking hotel rooms, and account management.

PARTNER APIs
Partner APIs, such as those offered by Sabre and Capital One, are focused on an organization’s set of
development partners. By limiting an API to partners, companies can tightly control who uses an API
and how it is used outside of their organization.

SAAS APIs
Companies such as GitHub, Stripe, and SendGrid take advantage of software-as-a-service APIs to
access their hosted data. They may choose to use SaaS through the existing user interface, through
the API, or a combination of both. SaaS vendors use APIs to reduce customer churn by helping their
customers integrate SaaS into their daily workflow.

PLATFORM APIs
Platform APIs extend the reach of SaaS providers like Microsoft Dynamics, Fitbit, and API2Cart by
bringing together multiple parties within a marketplace. By reaching beyond the typical provider-
consumer relationship found in SaaS, platforms often provide increased value through innovation and
a greater overall network.

8 Azure APIs+ Microservices Guide

Not only are web APIs used to provide capabilities within an organization, they are also becoming products
themselves. A recent example is Twilio, which started by offering a simple way to automate text and voice
interactions. Over time, it has expanded to support a variety of capabilities from fax to email. Through the
application of rigorous product management techniques, Twilio took what seems like a developer-focused
product and became one of the first organizations to go public with an IPO on the US stock market while
only offering an API-based product.

Organizations can use the same techniques that have led Twilio, Stripe, and other companies to deliver API
products to market. Ones that want to solve problems that matter to business developers will craft APIs
that address the desired outcomes of users. They seek to apply product ownership to their APIs, soliciting
feedback from stakeholders and continually improving the API design and documentation to make it easier
for API adoption.

Those that do not treat their APIs as products will produce APIs that are limited to serializing data over
HTTP or providing system-to-system integration. While there is a time and place for this style of API,
organizations won’t experience the economy of scale that API products thinking offers: the ability to reuse
them, increase velocity of delivery, and consistency of customer experience.

APIs as products

9 Azure APIs+ Microservices Guide

API business models
An effective API strategy must first
define the objectives of the API program.

Common objectives include:

Accelerating
mobile strategy by making data and
services more accessible.

Adapting
to changing customer relationships that go
beyond web and mobile to new devices and
experiences (omnichannel).

Transforming
partner integrations by improving efficiency
and freeing up resources.

Fostering
technical and business innovation by reducing
technical barriers to the delivery of new solutions.

Breaking down
silos to facilitate easier and more consistent data
sharing among internal teams and systems.

Increasing
revenue directly or indirectly by reducing
customer churn through deeper integration.

10 Azure APIs + Microservices Guide

Here are three examples
of how businesses have used APIs to
accomplish one or more of these goals:

FEDEX
The FedEx API increases partner efficiencies while simplifying their own logistics by building on those
offered by FedEx. The initial release of their API offered organizations a great deal of insight into shipping
logistics, which had been an opaque process just a few years ago. Now, every FedEx Office location is
effectively “powered by an API” that allows anyone, anywhere to upload documents for printing at a
nearby location.

BEST BUY
Best Buy has opened an API to adapt to changing customer relationships. They have massive stores with
vast inventories and they suffer from the “showrooming” problem. Potential customers come in, browse the
merchandise, and once they find the item, they use a site like Amazon to find a better price and place the
order. Best Buy opted to open its API to developers, making huge amounts of data open to third parties.
The company has been able to build a community that is willing, and even excited, to explore the data and
ways that it can be used.

NETFLIX
When Netflix originally started mailing DVDs in 1997, its competition was Blockbuster and the cable
providers. Over the next few years, Netflix quietly consumed the DVD rental market while preparing to
launch its streaming service in February 2007. Today, it is difficult to find a media device that doesn’t have
Netflix streaming support. This is in no small part the result of a strategic API initiative. Netflix ensures that
its API is easily integrated onto any devices that connects to a screen. The next time you use Netflix, think
about each interaction you have up to the point of streaming a show or movie. Each interaction is powered
by an API capability offered by its device integration API.

11 Azure APIs + Microservices Guide

CHAPTER
TWO

APIs encourage reuse and increase velocity
APIs are the ultimate multiplier for organizations because they can lead to reuse and increased velocity
by avoiding the need to rewrite the same thing over and over. What one team creates once can be used
by many developers to produce solutions used by hundreds or even thousands of end users.

Reuse of APIs often starts with internal developers. Rather than sharing libraries in a single
programming language, APIs enable code reuse across a variety of languages. Some organizations have
even gone to the extreme of calculating the number of lines that didn’t need to be written as a result of
adopting an API.

While not all APIs produced by your organization will have hundreds of consumers, it only takes one
team to re-implement a capability—but with slightly different behavior—to negatively impact your
customers and reduce organizational velocity.

BENEFITS OF MOVING TO AN API-CENTRIC ENTERPRISE

12 Azure APIs+ Microservices Guide

APIs break down silos
Organizations continue to struggle with
siloed applications that contain both
data and capabilities. With an API-centric
organization, the API owns the data
and capabilities instead of these siloed
applications. The result is that businesses
become more modular, able to unbundle
and re-bundle their capabilities to
innovate and engage customers in new
and exciting ways.

Orders API

Identify API

Rewards API Inventory API

Accounts API Catalog API
Enterprise

Breaking down the enterprise silos
into capability-based APIs.

Effective API programs help to break down these siloed systems by decomposing them into smaller
areas of concern (sometimes referred to as “bounded contexts”).

These areas offer a clear API that provides the capabilities and data for a specific business concern.
Solutions are then built on these APIs to solve the needs of the internal business, partners, app
developers, and third-party solution providers.

13 Azure APIs + Microservices Guide

APIs create a consistent customer experience
You have probably encountered an inconsistent customer experience. Perhaps the mobile app lacks the
same features as the website. Or perhaps the website doesn’t work exactly the same as a recently updated
mobile app. Whatever the cause, the customer experience is inconsistent and may result in customer churn.

We need to remember that APIs exist to help complete a job-to-be-done for customers. Either the job
requires the use of the API to start and finish the work, it requires the API for some portion of the work, or
the job is to bridge systems and organizations through machine-to-machine communication. Therefore,
APIs must be designed to deliver outcomes with the customer experience in mind. Remember, one poorly
designed API may have a negative impact on many developers and even more customers.

APIs are the ultimate IT do-over
No matter your business model or size, APIs are becoming the ultimate do-over for the IT department.
Organizations are able to design their APIs based on the business capabilities and jobs-to-be-done,
and then adapt the implementation of these APIs to integrate the appropriate systems and necessary data
sources. These APIs represent the future state of enterprise IT—even if the current state isn’t quite there yet.

Through well-designed APIs that represent the desired future state, systems that were previously unable to
be sunset are now hidden behind these APIs. Organizations taking an API-centric approach are more likely
to migrate to newer systems and add new capabilities while sunsetting older systems that are currently
relied on every day. Use your emerging API initiative to paint a picture of where the organization needs to
go. Then map out the processes and effort required to get there.

14 Azure APIs + Microservices Guide

CHAPTER
THREE

THE SHIFT TO API PLATFORM THINKING

What is an API platform?
Platforms create an ecosystem for orgs, customers, and partners. They connect everything that the
company does, both internally and externally. Until recently, most platforms were built by vendors
connecting a multisided marketplace such as supply chain management, customer relationship
management (CRM), and enterprise resource planning (ERP). Now API platforms are emerging within
organizations for the purposes of building internal, partner, and public solutions to meet the demands
of the marketplace.

15 Azure APIs+ Microservices Guide

The four elements of
an API platform
APIs provide interfaces to data and
behavior to deliver digital capabilities,
typically over HTTP. Your API portfolio
likely spans multiple lines of business
to address a combination of internal,
customer, and partner needs.

Let’s take a look at each of these elements and how they turn business and technical capabilities
into a robust API platform.

Message streaming to act
as a backbone for data.

1. 2.

3. 4.

SUCCESSFUL API PLATFORMS MOVE
BEYOND SIMPLE APIs.
An effective API platform includes the following elements:

A combination of private,
partner, and public APIs.

Event notification for
reacting to change.

A mixture of API styles.

16 Azure APIs+ Microservices Guide

Platforms contain private,
partner, and public APIs

While public APIs from companies such as Twilio and Stripe often dominate headlines, many businesses
restrict their public API exposure to a limited set of offerings. Companies such as Capital One offer a few
productized APIs for developers to use. Their APIs are confined to a sandbox environment, with production
access limited to those willing to engage in a more formal partnership. Others, such as Best Buy, make it
easier to use their APIs.

Not all APIs should be externalized for public or partner consumption. Private APIs enable a business to
deconstruct their operations into digitized capabilities through APIs built on internal systems. Some API
platforms today are constructed purely from private APIs that are only accessible within the organization.

It is sometimes estimated that there are 10 times more private APIs than publicly available APIs. It is likely
considerably more, since many organizations prefer to start with private APIs before opening them up to
partners and public developers.

17 Azure APIs + Microservices Guide

While private APIs make up the majority
of the API portfolio, organizations often
require integration with their partners. What
may have once been accomplished through
batch files and SOAP-based integrations is
now accomplished through web APIs. These
partner-focused web APIs are a subset of the
API portfolio, productized and supported for
efficient partner onboarding and integration.

To date, most APIs have focused on
integrating one or more systems. These
APIs act as the glue that drives the day-to-
day operations and support the workforce.
However, APIs are more than an integration
technology—they digitize capabilities
that represent the business. These digital
capabilities may be used internally,
to drive partner integrations, and to power
web and mobile applications.

Orders API

Identify API

Rewards API Inventory API

Accounts API Catalog API

Partners

Internal Developers

Third-party
approved apps

Customers

Public app developers

Devices

Enterprise

The enterprise API portfolio addresses the needs of the business, partners, customers, and public app developers.

18 Azure APIs+ Microservices Guide

Platforms require a mix
of API styles
The three most common API styles
today are REST, GraphQL, and gRPC.
Each one has strengths and weaknesses,
summarized here:

REST
stands for Representational State Transfer, an
architectural style detailed by Dr. Roy Fielding in
a 2000 dissertation that outlines the architectural
decisions and constraints applied to the HTTP
specification. While not a standard, it has been
used to provide an architectural guidepost for
designing web-based APIs.

Over time, REST has come to stand for some as
JSON over HTTP, commonly through the create,
read, update, and delete (CRUD) pattern. While
this may be a common pattern, there are a variety
of approaches available to building web-based
APIs over HTTP. REST-based APIs are easily
managed because each capability has its own URL
that may be secured and monitored through API
Management (APIM), as discussed later. Therefore,
offering a REST-based API is a great starting point,
allowing any application or automation script to
interact with your API over HTTP.

GraphQL
originated at Facebook as a method of optimizing
HTTP-based interactions between their mobile
app and their graph-based back end. It has since
become a common choice by front-end developers
that desire a consistent way of expressing queries
for the exact data desired. It is also used to
aggregate multiple back-end REST APIs into a
single request. GraphQL requests resemble SOAP-
based remote procedure call (RPC) requests, with
a single endpoint that accepts a specific request
format. They are therefore more difficult to secure,
monitor, and manage because they are managed
as a single URL by APIM.

gRPC
started at Google as a high-performance way to
send RPC requests between services. gRPC is built
on the newer HTTP/2 specification, which supports
performance improvements and multiplexing
communications. The result is a protocol optimized
for service-to-service communications within a
microservice-based architecture.

19 Azure APIs + Microservices Guide

Choosing the API styles that your enterprise uses helps to support
the various use cases they solve:

SOLUTIONS API STYLES AND PROTOCOLS

Shop Web App

Third-Party Marketplace API

Alexa Voice shopping skill

Shop REST API

Orders REST API

Inventory Mgmt gRPC API

Shop GraphQL API

Inventory Mgmt gRPC API

Catalog Mgmt gRPC API

Organizations have multiple options for
exposing their API-based capabilities. These
choices allow API platforms to address the
specific needs of developers by offering one
or more API styles.

For most organizations, using REST as a
foundational API style is wise because it has
an approachable management, security,
and tooling history. gRPC may be used
to optimize internal service-to-service
communication where appropriate. GraphQL
is a good choice in addition to REST for
reporting and front-end APIs that require
optimizations for the customer experience.

20 Azure APIs+ Microservices Guide

One of the most powerful elements of an API platform is event notification support. For every API capability
that creates or modifies data, there is at least one event that another system or solution may be interested
in receiving a notification about when it occurs.

Events allow solutions to be built on top of the platform without the platform knowing they exist. These
emerging solutions are notified when state changes occur. It also removes the need for systems to
constantly poll an API to see if any data has changed, using resources
more efficiently.

Those familiar with event-driven architectures (EDAs) know the power of events for integrating services and
scaling systems. Exposing some internal events or emitting course-grained business events as part of an API
platform reduces system-to-system coupling and creates opportunities for innovation in an agile way.

Platform event notifications
create extensibility

21 Azure APIs + Microservices Guide

Platforms offer data streams
Data streaming provides continuous, ordered delivery of atomic messages that
represent state change in data. Unlike web APIs that deliver data and behavior,
data streaming focuses on raw data.

Traditional message brokers are the backbone of most enterprises, delivering
transactional messages between systems. Data streams differ from traditional
message brokers in that they de-emphasize transactions in favor of append-only,
immutable streams of messages. This shift from message brokers supports
high-velocity data and even allows for replaying message history. Consumers
can revisit past messages in order of publication as new needs emerge or
corrective action is required.

Message streams are a recent addition to the API platform. They are used to
enforce data governance and data lineage requirements of regulated businesses.
In addition, they are becoming the preferred way for data analysis and machine
learning solutions that need to act on data as it becomes available, rather than
the more traditional batch-based approach through technologies such
as Hadoop.

TOPIC A

Consumer A Consumer B

Re
co

rd
 1

Re
co

rd
 2

Re
co

rd
 3

Re
co

rd
 4

Re
co

rd
 5

Re
co

rd
 6

Re
co

rd
 7

Re
co

rd
 8

Re
co

rd
 9

Re
co

rd
 1

0

Data streams allow consumers to process new and historical messages for analytics.

22 Azure APIs + Microservices Guide

Enterprise data management powers APIs through message and data streaming.

Solutions Capabilities Operations Data mgmt.
Data
processing

Shop Web
App Top-Selling

product
analysis

Third-Party
Marketplace
API

Alexa Voice
shopping
skill

Products
recommendation
engine

Search products Query available
products

Available products
DB

View product
details

Query product
catalog detail Product catalog

DB

Place order
Place order
command

Orders DB

View order satus Order placed
event

Browse history
stream

Ship order Query inventory
levels

Recomm products
DB

—

Update product
desc

Query recom
products

Update product
inventory levels

Product ordered
event

Being able to act on data in real time is a
key focus of a maturing API platform. By
being able to scale how you use your own
data, you will be able to analyze and act in
a more agile way.

23 Azure APIs+ Microservices Guide

Mesh app and service architecture (MASA), a new architectural model introduced by Gartner, reflects
the shift over recent years from a focus on applications to digitizing capabilities and constructing
API platforms. MASA enables dynamic connections between services, people, and processes across
channels and devices. It incorporates the API platform with external APIs into new solutions, allowing
organizations to react to changes in the marketplace at a much faster pace than previously possible
with siloed applications.

A common enabler of MASA is the integration platform as a service, or iPaaS. An iPaaS helps
integrate APIs and events together into integration solutions that connect systems, resulting in new
capabilities. These new capabilities may be deployed as services or new APIs that may be consumed
by other applications.

With the emerging growth of MASA and iPaaS, there is now a possibility to enable business developers
to construct applications with limited code requirements. This will allow software developers to focus
on the more challenging tasks of building digital capabilities as APIs, while business users, comfortable
with things such as scripting Excel using Visual Basic for Applications (VBA), are able to build complete
applications without waiting for available resources from the IT department.

There is even an opportunity for marketing departments to build ephemeral applications that live for a
limited period of time, such as for supporting a conference, and then are thrown out once they are no
longer needed. Until now, this hasn’t been possible because the cost of development has been too high
to build ephemeral applications. We are still in the early days, but this is becoming more of a possibility.

Mesh app and service
architecture

24 Azure APIs + Microservices Guide

CHAPTER
FOUR

THE EMERGENCE OF MICROSERVICES

The return of modular software
Over the last decade, we have seen new development frameworks emerge to make it easier than ever
to build and deploy web-based applications. The downside of these frameworks is that they rarely
encourage modular design. The result is quick development at the start of a new project, but over time
complexity increases beyond the ability of the framework to maintain the efficiencies it first enabled.

At the same time, containerization tools such as Docker and orchestration layers such as Kubernetes
have emerged. These tools encourage developers to easily break unwieldy applications into smaller
components and deploy them in a predictable way.

The intersection of these circumstances has led to a renewed interest in modular software design.
Unlike past modular efforts through component-based development, we are seeing these modules
built as services and externalized on the network. This has resulted in the rise of microservices.

25 Azure APIs+ Microservices Guide

What is a microservice?

Like many terms in the software industry, “microservices” brings to mind a variety of things. Some think of
microservices as small bits of code that offer a web-based API. Others think of microservices as a promise
to speed up their struggling development teams. Both of these things are true, but there is more to
microservices than many realize.

A microservice is a self-contained, independently deployable unit of code that focuses on doing one thing
well. Microservices have no specific line count, contrary to what some may believe.

26 Azure APIs + Microservices Guide

A microservice
architecture exhibits
the following traits:

Applies
bounded contexts to limit cognitive load.

Deploys
independently via CI/CD automation.

Enables
replaceability and experimentation by
limiting the scope of each service.

Encourages
right-sizing through the continual splitting
and recombination of services.

Manages
its own data sources and does not share
them with other services.

27 Azure APIs + Microservices Guide

An organization embarking on a
microservice journey may not be able to
realize the benefits immediately. Therefore,
organizations moving in this direction
should plan for the time required to mature
their microservice approach as they prepare
themselves for the journey ahead.

Web + Mobile app

Microservices

Microservices

Message
broker

Microservices

Microservices

Orchestr. API

API

API

API

API

Alexa voice skill Orchestr. API

Slack Chatbot Orchestr. API

...

...

...

...

...

...

...

...

A common microservice architecture using orchestration APIs that call one or more microservices behind the scenes.

A microservice architecture
is made up of a combination of API-based services and event- or message-driven services. A common
practice is to include front-end orchestration APIs that make calls to one or more microservices. This
enables organizations to offer stable contracts through the orchestration APIs, while replacing or splitting
microservices behind the scenes and with no impact to API consumers.

28 Azure APIs + Microservices Guide

Benefits of a microservice architecture
All organizations want to build software faster than they do today. However, they must ensure their
software works as expected, consistently and accurately. As a result, processes are installed to prevent
moving fast and breaking things. These processes often include meetings that coordinate within and across
teams. Every time there is a need to make a change to how an application or service works, coordination
meetings are required. This results in a slower organization.

This tension between speed and safety is common. Organizations must find the balance between delivering
software as fast as possible and the risk of introducing bugs that impact the safety and stability of customer
and partner interactions.

A microservice architecture is primarily about reducing coordination costs of aligning efforts across multiple
teams/developers working on a complex system. This is accomplished by limiting the scope of a single
service while ensuring it is independently deployable. When an enhancement or fix is required, it is made
within the microservice quickly and deployed with confidence. Data sources are assigned to a single service
and cannot be shared across services, otherwise the coordination cost of the microservices is higher when
changes are applied to a shared data store.

When microservices might be the wrong choice
Although microservices have been gaining in popularity, they may not be the right choice for all
organizations. Microservices were originally intended to separate highly complex systems by distributing
these complexities across the company, rather than having them concentrated in one area. They are best
for larger organizations with a large number of developers. Smaller organizations, with systems of lower
complexity, often find that the extra work of managing independent services outweighs the benefits of a
microservice architecture.

29 Azure APIs + Microservices Guide

In general, organizations should think
smaller. They should seek to decompose
solutions into smaller units of independently
deployed code. However, a complete shift to
a microservice architecture may not be the
right answer. Instead, perhaps decomposing
internal systems into modular monoliths with
clearly bounded contexts that expose web
APIs and business events may be sufficient
for the needs of the organization.

Other considerations include:

Microservices require a fully automated system. A developer should be able to design a microservice,
register the service with an automated deployment system, and deploy code as needed without any
manual processes or approvals. Organizations that have not fully automated their deployment pipeline and
removed all or most of their manual processes will encounter considerable friction. Existing microservices
will need to be used to deploy new capabilities, resulting in a few siloed services.

Microservices must be independently deployable. Some organizations opt to use their existing
deployment processes, resulting in a coordinated deployment of all microservices at once. The outcome is
a distributed monolith that prevents organizations from realizing the full potential of speed and safety.

Microservices should be owned, monitored, and managed by a single team. A team may own a few
microservices but should not be responsible for a large number of services. Sometimes, organizational
structure and culture will be at odds with this style of service ownership, making it difficult to successfully
deploy a complete microservice architecture that supports the desired speed and safety. Keep this in mind
before shifting to microservices.

Data sources will be distributed, because each service must own its data. This requires heavy
investment in distributed data management through data streaming or ETL processes to bring together
data from multiple services for the purposes of reporting. Organizations with large databases must use
caution when migrating to a microservice architecture.

The journey toward microservices requires a deep understanding of distributed systems. Those not
as familiar with the concepts of distributed tracing, observability, eventual consistency, and distributed
sagas will encounter a more difficult time with microservices.

30 Azure APIs + Microservices Guide

CHAPTER
FIVE

COMPONENTS OF AN API PLATFORM

API management and security
API Management (APIM) layers accelerate the deployment, monitoring, security, versioning, and sharing of
APIs. They are often deployed as a reverse proxy, intercepting all incoming API request traffic and applying
policies to determine if requests are authorized to be routed to the API. The APIM layer may be fully hosted
in the cloud—as with Azure API Management or the Tyk open source API gateway—or on-premises, or
companies can use a hybrid approach.

Additionally, APIM enforces rate limits to prevent unlimited API usage, helps ensure security through
API tokens and/or OAuth 2, and protects against a number of attack vectors. While some offer identity
management as a built-in feature, most organizations will configure APIM to work with a third-party
identity provider to offload user management and authentication.

Keep in mind that security is a process, not a product, and a continual one at that. Even with the ever-
changing security landscape, we can still lay down an evolving set of best practices and test against them.
Don’t forget to develop healthy practices for monitoring your API surface area for malicious attacks.

https://azure.microsoft.com/en-us/services/api-management/
https://tyk.io/

31 Azure APIs + Microservices Guide

Identity provider
An identity provider (abbreviated IdP) creates, maintains, and manages identity and access information
for your API. They also provide authentication services to your APIM and support single sign-on (SSO)
through technologies such as Security Assertion Markup Language (SAML). Some IdPs offer OpenID
Connect (OIDC) support, which extends OAuth 2.0 with additional authorization support using web APIs
and JSON identity tokens.

Content distribution network
A content distribution network (CDN) is a distributed cache at the edge of the internet that helps to
reduce the load on origin servers. This helps cacheable API responses to be returned to web or mobile
apps quicker because the content is often closer to the device than the origin servers. CDNs also offer
additional protection from distributed denial-of-service (DDoS) attacks by monitoring layer 3 and layer
4 traffic, detecting problems, and preventing those problems from impacting customers, partners, and
internal systems.

32 Azure APIs+ Microservices Guide

Automating the build and deployment process is
critical for a high-value API program. While most
organizations have manual checks and verification
steps as part of their release process, fewer manual
steps means faster time-to-production. This is
accomplished through a robust CI/CD pipeline.

Continuous integration (CI) requires developers
to merge their changes back to the main branch
as often as possible. Changes are validated by
building a deployment package, and then running
automated tests against the build. Continuous
integration places heavy emphasis on automated
tests to verify that the API is not broken on each
new merge to the code trunk. Automated test
strategies for APIs are discussed later.

Continuous delivery (CD) extends continuous
integration to include automation of your release
processes through predictable, scripted processes.
Many organizations still prefer a routine release
cycle—for example, every two weeks—and
therefore opt for this approach. Those that prefer
full automation to production select a continuous
deployment approach. Continuous deployment
supports full release automation as soon as code is
checked in, validated, and deployed.

Example of an API definition using OpenAPI v2

Deployment automation

Open source solutions, such as Ansible, Chef, and
Puppet, along with managed solutions such as
Azure DevOps services provide all of the necessary
components to support your CI/CD pipeline
needs, including agile tools, Git repositories, and
configurable pipeline capabilities.

https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://azure.microsoft.com/en-us/services/devops/

33 Azure APIs + Microservices Guide

API definition and documentation
Effective communication is a critical factor for API adoption. In fact, your documentation is the primary
method for communicating with developers on how to use the API. Your API documentation is your
API’s user interface.

API documentation was previously captured in a static document using HTML or PDF, but new options
are now available. Tools such as Swagger, RAML, and Blueprint are just a few of the formats available to
capture the definition of your API in a machine-readable format. These formats support the generation
of reference documentation for your API.

Many organizations are also benefiting from the integration of these definitions into their software
development life cycle (SDLC), helping to drive automation and configuration of their APIM and
other infrastructure.

34 Azure APIs + Microservices Guide

A robust developer portal will include the following sections:

While this list may look daunting, it is
recommended to add minimal content into
each section to address the common needs
of your target audience. You can then grow
the content over time until the developer
portal addresses many of the questions and
common use cases associated with your API.

Some open source and commercial
APIM vendors support publishing your
documentation artifacts to a developer
portal, making it easy for developers to
have important documentation on hand.

Overview that describes the use cases that the API solves and basic connectivity details.

Authentication and authorization that covers how the API is secured, how to obtain an
API access token, and details about token expiration.

Example workflows, commonly in HTTP request/response format, and code examples to
help developers understand how to solve common problems with the API.

Rate limiting and related SLA details to understand how an application may be limited in
its use of the API, including pricing (where applicable).

API reference documentation, typically generated from your API definitions, for
developers who need to understand the details of each API endpoint.

1.
2.
3.
4.
5.

The developer portal
Complete API documentation requires more than just your API reference documentation. A developer
portal brings together the different styles of communication that you need to ensure that APIs can be
discovered and the benefits of using your API are understood. It offers guidance to developers on how
to get started integrating your API.

35 Azure APIs + Microservices Guide

Putting it together:
A modern API architecture Client apps

HTTPS

Creates client
apps

API Management

Developer portal

API gateway

Azure SQL
Database

Cosmos DB
Authentication

Cosume API
documentation

Publish
interfaces

Azure CDN

Azure Active
Directory

API Consumer

Microservices

An API and microservice architecture built on Azure Cloud services.

Below is an architecture diagram that illustrates the previous components working together
to support client applications using APIs and microservices:

36 Azure APIs + Microservices Guide

CHAPTER
SIX

PLANNING YOUR MOVE TO AN API-CENTRIC ORGANIZATION

Developing your API strategy
APIs extend beyond a set of technologies with developer interest. They power customer experience,
business relationships, and internal innovation. A clear API strategy transforms your data and processes
into digital capabilities with a programmable interface.

Unfortunately, some organizations realize too late that teams are already designing and deploying APIs.
These APIs are built to solve a specific problem, are often designed in isolation, and lack the necessary
consistency for reuse.

By clearly defining the objectives of your organization’s API program first, you can keep teams focused
on delivering business value that meet these goals. After establishing your API program objectives,
clearly document them and share them throughout the organization. Use key performance indicators
(KPIs) to measure the success of your program, track them over time, and adjust your execution
accordingly to meet your objectives.

37 Azure APIs + Microservices Guide

Designing an API design-first process
Too often, API design is either ignored or rushed and therefore fails to take advantage of the
opportunity to learn and improve on an API design before release. Taking an API design-first approach
allows for incorporating feedback before it is released, preventing the need for breaking changes
immediately after release.

An API design-first approach starts by identifying the capabilities to be delivered and then moves
toward an API design to meet those capabilities. All this occurs before a line of code is written. Although
this may seem like a waterfall approach, it isn’t. Instead, it is the application of the Agile Manifesto
principle of combining business and technology into small iterations that deliver business value.

38 Azure APIs + Microservices Guide

An API design-first process includes stakeholder feedback.

Discover the capabilities that need to be
delivered. Focus on behavior and desired
outcomes first, before focusing on the code.

Model and design the API. Transform the
desired capabilities into a resource-based
approach using the power of HTTP.

Document the initial API design. The
documentation should provide enough
understanding to demonstrate common
use cases.

Seek feedback from stakeholders. Use
feedback to validate that the API design
meets stakeholder needs.

Update the API design. Incorporate feedback
as appropriate into the design before code has
been be updated. Repeat steps 1 through 4 as
often as needed to refine the API design.

Produce a mock version of the API. As the
design begins to take shape, use the captured
design definition, typically using the OpenAPI
format, for your stakeholders to review.

Release the implemented API as a preview
release. During this preview release, additional
insights and incorrect design assumptions
will emerge. Make necessary changes before
officially releasing the API into production.

Promote the release to production. Once
the preview release meets the needs of
stakeholders, release the API to production. At
this point, breaking changes are not allowed.

DISCOVER

PROTOYPE

DELIVER

CONSUME

Identify capabilities

Decompose to
Microservices

Model API
capabilities

Test / QA
API

Release API to
stage, product

Design
API

Finalize docs,
tutorials, examples

Mock API design

Consumer integrates

API feedback from
stakeholders

Consumer onboards

1 2 3

45

6a 6b

7

8a 8b

6c

The process consists of the following steps, executed in parallel when possible: 1.
2.

3.

4.

5.

6.

7.

8.

39 Azure APIs + Microservices Guide

Keep in mind that this process may be used incrementally to deliver read-only endpoints,
followed by endpoints that manipulate data or support more of the workflow process. Take
advantage of the preview release to work out trouble spots, improve documentation, and
expand code examples that demonstrate API usage.

By focusing on constant communication and feedback from stakeholders, you avoid
the need to redesign and reimplement the API under time constraints while continually
delivering business value to stakeholders.

40 Azure APIs + Microservices Guide

API portfolio management includes the following steps:

PARTITION
the portfolio into domain areas. Not all APIs are related (e.g., customer accounts, orders, and inventory
for an e-commerce platform). Separate your APIs and microservices into domain areas and assign
product ownership of each area.

DEFINE
a clear process to add new APIs. Setting up a clear process for adding APIs and microservices into the
portfolio will prevent confusion about where new APIs belong and make it easier for API consumers to
find the APIs they need.

MANAGE
URL paths like domain names. The URL paths under your API host name (e.g., api.mycompany.com are just
like domain names—they are real estate for developers. Manage your URL paths through the use of well-
known prefixes that support your domain-partitioning scheme. This will prevent scattered API endpoints,
duplicate or confusing resource names, and conflicting paths.

Managing your API portfolio
Some organizations have efficient processes that help them produce large quantities of APIs and
microservices, yet they have no clear organization of their overall portfolio. An organization’s lack of
portfolio management results in a spiraling effect that can result in rebuilding capabilities that already exist.

Properly executed API portfolio
management ensures that teams across
the organization can contribute to the
overall portfolio. It will also make it easier
for consuming teams to look for an API to
address the needs of their apps. Be sure to
nominate a product manager or small team
to own the API portfolio, perhaps as part of
your API governance strategy.

41 Azure APIs + Microservices Guide

Discover
Identify new API capabilities as
needs emerge from stakeholders.

Design
Refine those needs with the
stakeholders, identify capability
requirements, and design the
API accordingly.

Deliver
Implement, test, and verify
that the new capabilities meet
stakeholder expectations.

Release
Deploy, monitor, and manage
the API at runtime.

Establishing an API life cycle
An API program should establish a clear and comprehensive API life cycle. The seven common
stages for an API life cycle are:

Integrate existing software processes
throughout the API life cycle as necessary, but
be prepared to adjust processes to prevent
negative effects for existing API consumers.

Share
Inform your stakeholders and other
developers of the new capabilities.

Enhance
Incorporate consumer feedback and
use proper versioning techniques to
enhance the API without disrupting
existing consumers.

Retire
Inform consumers of any plans to stop
supporting an existing API, migrate
consumers to a new API (if available),
and retire the API.

1.

2.

3.

4.

5.

6.

7.

42 Azure APIs + Microservices Guide

For each of these aspects of your testing
strategy, seek to find tools that help to
support an API design-first approach. For
organizations that prefer more code-driven
testing, drive your tests from code generated
by your API definitions and perform manual
tests as appropriate. Tool-driven QA teams
may wish to consider tools that can help
to build test suites automatically from your
API definitions, with additional QA-defined
test cases as needed. When possible,
avoid manual testing of your API beyond
exploratory testing.

Defining an API test strategy
When building an API, a proper test strategy ensures that your API both works correctly and meets the
promises of its definition. A complete API testing strategy covers the code, the API functionality, API
contract testing, and acceptance testing.

Unit testing
focuses on whether the code that powers your
API is working properly. It helps to reproduce a
discovered bug, verify the bug is fixed, and prevent
regression of the bug as the code continues to
change and evolve.

Functional testing
verifies that each API endpoint meets the expected
behavior. Functional tests should exercise each
endpoint for success and error cases to ensure that
the API was coded defensively in the face of bad
or malicious client code.

Contract testing
ensures that the implementation of the API
matches the specification. Compare your runtime
API request/response traffic against your API
definitions (typically in OpenAPI, API Blueprint,
or RAML format), reporting anything that deviates
from the expected contract.

Acceptance testing
executes a series of predetermined paths that best
represent the kinds of interactions your end users
will have with your API, verifying that a specific end
state is achieved.

43 Azure APIs + Microservices Guide

Monitoring your APIs
Monitoring today’s robust applications requires more than just making sure your processes are
running. It requires tracing an incoming web request across all the endpoints and services that
support that request. Observability ensures that you can detect when recent deployments result in
an increased number of errors—something the CI/CD pipeline may have missed.

Modern architectures often require the combination of distributed logging, distributed tracing, and
API monitoring support (often offered as a feature within APIM) to properly troubleshoot and assess
runtime errors. Some organizations are finding that the instrumentation available via a service mesh
is a nice complement to these tools when adopting microservices.

44 Azure APIs+ Microservices Guide

A healthy API governance initiative should encourage consistency across the organization,
mixed with flexibility to support changing requirements. This is accomplished through the
following governance actions:

Governing your API platform
Many historical SOA governance programs
were internally focused to remove operational
redundancies, resulting in slow processes that
seemed to add little value to teams producing
new services. Modern API programs have
shifted this to an externally focused approach
that strives to focus on delivering business
value as a priority..

Coach
teams on API modeling and design techniques,
resulting in self-sufficient delivery teams.

Produce
educational material, training, and other
resources to communicate shared learning.

Empower
solution teams to discover and consume
existing APIs, increasing the likelihood of
reusing an API rather than duplicating effort.

Define
a clear API style guide with design patterns that
support the organization’s common use cases.

Create
policies for onboarding, rate limiting, and
access control.

Craft
flexible processes and practices that
encourage innovation.

45 Azure APIs + Microservices Guide

Organizations with a large number of development teams or geographically distributed
teams may benefit from a federated governance model. In this model, a central API
governance team trains and empowers representatives within each business unit or
region to provide context-specific guidance and coaching to teams that are producing
APIs. Feedback from the representatives help the central API governance team to adjust
processes to better meet the needs of developers across the organization.

API governance can be centralized and managed by a single team for the life of the API
program. For larger organizations, governance may be centralized at the start but evolve
to a more federated approach over time to scale the process.

46 Azure APIs+ Microservices Guide

One approach is to separate these APIs through specific prefixes or hostnames—for example,
GET /legacy/accounts/1234 or https://legacy-api.mycompany.com/accounts/1234.This
provides a clear path for in-flight projects, while keeping these APIs isolated from your core API portfolio.

For APIs already deployed without APIM, start identifying the APIs that need to be cataloged and managed
by reviewing request logs. Identify the highest-risk APIs, work with the team that built the APIs, and
develop a plan to migrate them behind APIM as soon as possible.

If existing APIs do not have API definitions already created, there are two common options: use tools to
generate your API definitions from code, or use traffic capture tools to generate HTTP Archive (HAR) files
that are then parsed by tools capable of generating API definitions from runtime sources. Both options will
help jump-start your documentation and governance efforts.

Incorporating existing
APIs into your platform
Not all your APIs will be designed under an
established API program. Some may have
been designed and deployed before the
program is formed. Others may be designed
in parallel to the initiative, before there are
enough processes and people in place to
assist them. Expect this to be the reality of
your API program for a while.

Additional reading

“Cloud Design Patterns” – design patterns
are useful for building reliable, scalable,
secure applications in the cloud.

“The API gateway pattern versus the direct
client-to-microservice communication”
– optimizing client interaction with a
microservice-based architecture.

“A Practical Approach to API Design”– a
guide to understanding and designing
REST-based APIs.

”Designing APIs for microservices” – an
introduction to API design considerations
for microservices.

CONCLUSION

	 Back to top

While it may be challenging at times to launch and sustain
an API program, it is ultimately rewarding when you see the
organizational shift from a set of ad hoc APIs to a healthy
API program. By incorporating these practices into your API
program, you will create a predictable API design and delivery
process, alongside a complete API architecture that ensures
your APIs are monitored, managed, and secure.

© 2019 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document, including
URL and other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any
legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
http://theapidesignbook.com/
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/api-design

